PRODUCT SPECIFICATION

GLXP-1596-60D(I)

10Gb/s Duplex LC, SMF, 1550nm EML, APD Receiver, ZR 60km SFP+ Transceiver

FEATURES:

- ★ Support multi-protocol from 8.5Gb/s to 11.3Gb/s
- ★ Hot-Pluggable SFP+ footprint
- ★ Cooled 1550nm EML laser transmitter
- ★ APD Receiver
- ★ Duplex LC connector
- ★ Up to 60 km on 9/125µm SMF
- ★ Single +3.3V Power Supply
- ★ Compliant with SFF-8431 SFF-8432 and IEE802.3ae
- ★ Low power dissipation <1.8W typically
- ★ Commercial operating temperature range: 0°C to 70°C
- ★ RoHS compliant

APPLICATIONS:

- ★ 10GBASE-ZR/ZW Ethernet
- ★ 60km 10G Fiber channel
- ★ SONET OC-192/SDH STM-64

DESCRIPTION:

GLight GLXP-1596-60D(I) transceivers are Enhanced Small Form Factor Pluggable SFP+ transceivers designed for use in 10-Gigabit multi-rate links up to 60km of G.652 single mode fiber. They are compliant with SFF-8431, SFF-8432 and 10GBASE ZR/ZW; support 4x, 8x and 10x Fibre Channel. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472. GLight GLXP-1596-60D(I) transceivers are RoHS compliant per Directive 2011/65/EU. The high performance 1550nm EML transmitter and high sensitivity APD receiver provide superior performance for Ethernet applications at up to 60km links.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit
Storage Temperature	Ts	-40		+85	°C
Supply Voltage	V _{CC}	-0.5		4	V
Relative Humidity	RH	0		85	%
Industrial	TC	-40		+85	
Commercial	TC	0		70	

■ Electrical Characteristics (T_{OP} = Tc, VCC = 3.135to 3.465Volts)

Parameter	Symbol	Min.	Typical	Max.	Unit	Note
Supply Voltage	Vcc	3.14	3.30	3.47	V	
Supply Current	Icc			455	mA	
Inrush Current	Isurge			Icc+30	mA	
Maximum Power	P _{max}			1.8	W	
Transmitter Section:						
Input differential impedance	R _{in}		100		Ω	1
Single ended data input swing	V _{in PP}	180		700	mVp-p	2
Transmit Disable Voltage	VD	2		Vcc	V	3
Transmit Enable Voltage	V _{EN}	Vee		Vee+ 0.8	V	
Transmit Disable Assert Time	T _{dessert}			10	us	
Receiver Section:			·			
Rx Output Diff Voltage	Vo	300		850	mV	3
Data output rise time	t _r	30			ps	4
Data output fall time	t _f	30			ps	4
LOS Fault	Vlosfault	2		V _{CC_host}	V	5
LOS Normal	V _{los norm}	V _{ee}		Vee+0.8	V	5

Note:

1. Connected directly to TX data input pins. AC coupling from pins into laser driver IC.

2. Per SFF-8431 Rev 3.0

3. Into 100 ohms differential termination.

4.20%~80%

5. LOS is an open collector output. Should be pulled up with $4.7k - 10k\Omega$ on the host board. Normal operation is logic 0; loss of signal is logic 1. Maximum pull-up voltage is 5.5V.

Parameter	Symbol	Min.	Typical	Max.	Unit	Note
Transmitter Section:		_			_	
Center Wavelength	λ _c	1530	1550	1570	nm	
Spectral Width	$\triangle \lambda$			0.3	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Optical Output Power	Pout	-3		1	dBm	
Optical Power OMA	Рома	-2.1			dBm	
Optical Rise/Fall Time	t _r / t _f			260	ps	
Laser Off Power	Poff			-30	dBm	
Extinction Ratio	ER	8			dB	
Transmitter Dispersion Penalty	TDP			3.0	dB	2
Relative Intensity Noise	RIN			-128	dB/Hz	3
Optical Return Loss Tolerance		21			dB	
Eye Mask for Optical Output	Compl	iant with IE	EE802.3 z (c	lass 1 laser s	safety)	
Receiver Section:						
Optical Input Wavelength		1530		1570	nm	
Receiver Overload	Pol	-1			dBm	5
RX Sensitivity	Sen			-22	dBm	4
Stressed Sensitivity (OMA)	Senst				dBm	4
RX_LOS Assert	LOS _A	-36			dBm	
RX_LOS Deassert	LOS D			-25	dBm	
RX_LOS Hysteresis	LOS _H	0.5			dB	
Receiver Reflectance	Rrx			-26	dB	

■ Optical Parameters(T_{OP} = Tc, VCC = 3.00 to 3.60 Volts)

Note:

1. Average power figures are informative only, per IEEE802.3ae.

2. TWDP figure requires the host board to be SFF-8431compliant. TWDP is calculated using the Matlab code provided in clause 68.6.6.2 of IEEE802.3ae.

3. 12dB reflection.

4. Conditions of stressed receiver tests per IEEE802.3ae. CSRS testing requires the host board to be SFF-8431 compliant.

5. Receiver overload specified in OMA and under the worst comprehensive stressed condition.

Pin Assignment

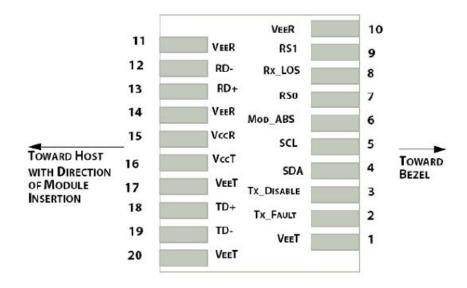


Figure2:Diagram of Host Board Connector Block Pin Numbers and Names

■ Pin Description

Pin No	Name	Function	Notes
1	VeeT	Transmitter Ground	1
2	TX Fault	Transmitter Fault Indication	2
3	TX Disable	Transmitter Disable	3
4	SDL	2 wire serial interface data input/output (SDA)	
5	SCL	2 wire serial interface clock input (SCL)	
6	MOD-ABS	Module Absent, connect to VeeR or VeeT in the module	2
7	RS0	Rate select0, optionally control SFP+ receiver. When high, input data rate >4.5Gb/ s; when low, input data rate <=4.5Gb/s	
8	LOS	Loss of Signal	4
9	RS1	Rate select0, optionally control SFP+ transmitter. When high, input data rate >4.5Gb/s; when low, input data rate <=4.5Gb/s	
10	VeeR	Receiver Ground	1
11	VeeR	Receiver Ground	1
12	RD-	Inv. Received Data Out	
13	RD+	Received Data Out	
14	VeeR	Receiver Ground 1	
15	VccR	Receiver Power	

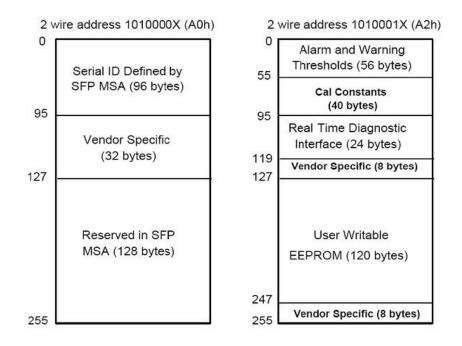
16	VccT	Transmitter Power	
17	VeeT	Transmitter Ground	1
18	TD+	Transmit Data In	
19	TD-	Inv. Transmit In	
20	VeeT	Transmitter Ground	1

Notes:

- 1. The module ground pins shall be isolated from the module case.
- 2. This pin is an open collector/drain output pin and shall be pulled up with 4.7K-10Kohms to Host_Vcc on the host board.
- 3. This pin shall be pulled up with 4.7K-10Kohms to VccT in the module.
- 4. This pin is an open collector/drain output pin and shall be pulled up with 4.7K-10Kohms to Host_Vcc on the host board.

SFP Module EEPROM Information and Management

The SFP modules implement the 2-wire serial communication protocol as defined in the SFP-8472. The serial ID information of the SFP modules and Digital Diagnostic Monitor parameters can be accessed through the I²C interface at address A0h and A2h.


The memory is mapped in Table 1.

Detailed ID information (A0h) is listed in Table 2.

And the DDM specification at address A2h.

For more details of the memory map and byte definitions, please refer to the SFF-8472, "Digital Diagnostic Monitoring Interface for Optical Transceivers". The DDM parameters have been internally calibrated.

Table 1. Digital Diagnostic Memory Map (Specific Data Field Descriptions)

EEPROM Serial ID Memory Contents (A0h)

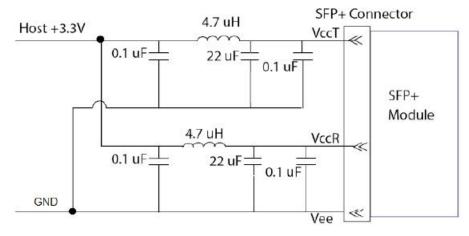
Data	Length	Name of			
Address	(Byte)	Length	Description and Contents		
	Base ID Fields				
0	1	Identifier	Type of Serial transceiver (03h=SFP)		
1	1	Reserved	Extended identifier of type serial transceiver (04h)		
2	1	Connector	Code of optical connector type (07=LC)		
3-10	8	Transceiver	10GBASE-ZR		
11	1	Encoding	64B/66B		
12	1	BR,Nominal	Nominal baud rate, unit of 100Mbps		
13	1	Reserved	(0000h)		
14	1	Length(9um,km)	Link length supported for 9/125um fiber, units of km		
15	1	Length(9um)	Link length supported for 9/125um fiber, units of 100m		
16	1	Length(50um)	Link length supported for 50/125um fiber, units of 10m		
17	1	Length(62.5um)	Link length supported for 62.5/125um fiber, units of 10m		
18	1	Length(Copper)	Link length supported for copper, units of meters		
19	1	Reserved			
20-35	16	Vendor Name	SFP vendor name:		
36	1	Reserved			
37-39	3	Vendor OUI	SFP transceiver vendor OUI ID		
40-55	16	Vendor PN	Part Number: "xxxxxx" (ASCII)		
56-59	4	Vendor rev	Revision level for part number		
60-61	2	Wavelength	Laser wavelength		
62	1	Reserved			
63	1	CCID	Least significant byte of sum of data in address 0-62		
	I		Extended ID Fields		
() (5	2	Oution	Indicates which optical SFP signals are implemented(001Ah =		
64-65	2	Option	LOS, TX_FAULT, TX_DISABLE all supported)		
66	1	BR, max	Upper bit rate margin, units of %		
67	1	BR, min	Lower bit rate margin, units of %		
68-83	16	Vendor SN	Serial number (ASCII)		
84-91	8	Date code	Manufacturing date code		
92	1	Diagnostic Type	Diagnostics		
93	1	Enhanced Options	Diagnostics		
94	1	SFF-8472	Diagnostics		

95	1	CCEX	Check code for the extended ID Fields (addresses 64 to 94)	
	Vendor Specific ID Fields			
96-127	32	Readable	adable Vendor specific date, read only	
128-255	128	Reserved	Reserved for SFF-8079	

Digital Diagnostic Monitor Characteristics

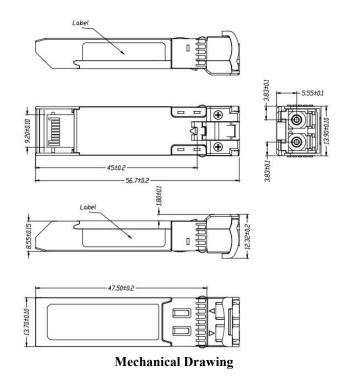
Data Address	Parameter	Accuracy	Unit	Calibraton
96-97	Transceiver Internal Temperature	±3.0	°C	internal
98-99	VCC3 Internal Supply Voltage	±5.0	%	internal
100-101	Laser Bias Current	±10	%	internal
102-103	Tx Output Power	±3.0	dBm	internal
104-105	Rx Input Power	±3.0	dBm	internal

Regulatory Compliance


The transceiver complies with international Electromagnetic Compatibility (EMC) and international safety requirements and standards (see details in Table following).

Electrostatic Discharge	MIL-STD-883E	$C_{1000} 1(>1000 V)$
(ESD) to the Electrical Pins	Method 3015.7	Class 1(>1000 V)
Electrostatic Discharge (ESD)	IEC 61000-4-2	Commetible with story doubt
to the Duplex LC Receptacle	GR-1089-CORE	Compatible with standards
Electromeconstic	FCC Part 15 Class B	
Electromagnetic	EN55022 Class B (CISPR 22B)	Compatible with standards
Interference (EMI)	VCCI Class B	
Lagar Errs Safata	FDA 21CFR 1040.10 and 1040.11	Compatible with Class 1 laser
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	product.

References


- IEEE Std 802.3, 2002 Edition, Clause 38, PMD Type 1000BASE-LX.IEEE Standards Department, 2002.
- 2. "Fibre Channel Physical and Signaling Interface (FC-PH, FC-PH2, FC-PH3)". American National Standard for Information Systems.
- "Fibre Channel Draft Physical Interface Specification (FC-PI 13.0)". American National Standard for Information Systems.
- Small Form-factor Pluggable (SFP) Transceiver Multi-source Agreement (MSA) September 14, 2000.

Recommended Circuit:

Recommended Host Board Power Supply Circuit

Mechanical Dimensions

Shenzhen GLight Communication Technology Co., Ltd.

5F, Building 3, Chao Hui Lou Industrial Park, No.119 Da Lang Hua Ting Road Longhua district, Shenzhen, Guangdong, China 518000

GLIGHT reserves the right to make changes to the products or information contained herein without notice.

No liability is assumed as a result of their use or application.

No rights under any patent accompany the sale of any such products or information.

Published by Shenzhen GLight Photoelectric Co., Ltd. Copyright © GLight Photoelectric Co., Ltd. All Rights Reserved.