

PRODUCT SPECIFICATION

GLSF-BL/BS5403-FOD(I)

155Mb/s BiDi Single LC/SC, SMF, 1550nm Tx, 1490nm Rx, DFB-LD, 150km SFP Transceiver

FEATURES:

- ★ Up to 155Mb/s Data Links
- ★ Hot-Pluggable SFP footprint
- ★ Single LC/SC for Bi-directional Transmission
- ★ Built-in 1550nm DFB Laser.
- ★ Built-in 1550/1490nm WDM Filter
- ★ Built-in digital diagnostic functions
- ★ Up to 150 km on $9/125\mu$ m SMF
- ★ Single +3.3V Power Supply
- ★ Isolation > 30dB, Cross Talk < -45dB
- ★ Commercial operating temperature range: 0°C to 70°C
- ★ Very low EMI and excellent ESD protection
- ★ RoHS compliant

GENON TO MAN TO

APPLICATIONS:

- ★ SDH STM-1/ SONET OC-03
- **★** Fast Ethernet
- **★** WDM Application
- ★ Other Optical Link

DESCRIPTION:

GLight GLSF-BL/BS5403-FOD(I) Bi-Directional transceiver is a high performance, cost effective module, which is compliant with LC/SC Optics interface with built in WDM for Bi-Directional serial optical data communication applications. This module is designed for Single-Mode single fiber, operates at the normal wavelength of 1550/1490nm.

The transmitter section incorporates DFB and driver IC with temperature compensation and automatic power control circuit, which makes the transmitter section output power and Extinction

ration stabled in operation temperature.

The receiver section incorporates an efficient InGaAs photodiode and transimpedance with AGC for wide dynamic range.

■ Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit	
	Industrial		-40		+85	°C
Case operating Temperature	Extended	TC				°C
	Commercial		0		70	°C
Supply Voltage		V _{CCT, R}	-0.5		4	V
Relative Humidity		RH	0		85	%

■ Electrical Characteristics (T_{OP} = Tc, VCC = 3.135 to 3.465 Volts)

Parameter	Symbol	Min.	Typical	Max.	Unit	Note
Supply Voltage	Vcc	3.14	3.3	3.47	V	
Supply Current	Icc			300	mA	
Inrush Current	I _{surge}			Icc+30	mA	
Maximum Power	P _{max}			1.0	mW	
Transmitter Section:						
Input differential impedance	R _{in}	90	100	110		
Single ended data input swing	V _{in PP}	200		1200	mVp-p	
Transmit Disable Voltage	V_{D}	Vcc - 1.3		Vcc	V	2
Transmit Enable Voltage	V _{EN}	Vee		Vee+ 0.8	V	
Transmit Disable Assert Time	T _{dessert}			10	us	
Receiver Section:						
Single ended data output swing	Vout,pp	300	500	1000	mv	3
Data output rise time	t _r			1300	ps	4
Data output fall time	t_{f}			1300	ps	4
LOS Fault	V _{losfault}	Vcc - 0.5		V _{CC_host}	V	5
LOS Normal	V _{los norm}	Vee		V _{ee} +0.5	V	5
Power Supply Rejection	PSR	100			mVpp	6
Deterministic Jitter Contribution	RXΔDJ			51.7	ps	7

Total Jitter Contribution	RXΔTJ	100		ps	
Total vitter continuation	101010	100		l Po	

Note:

- 1. AC coupled.
- 2. Or open circuit.
- 3. Into 100 ohm differential termination.
- 4. 20 80 %
- 5. LOS is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 6. All transceiver specifications are compliant with a power supply sinusoidal modulation of 20 Hz to 1.5MHz up to specified value applied through the power supply filtering network shown on page 23 of the Small Form-factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 14, 2000.
- 7. Measured with DJ-free data input signal. In actual application, output DJ will be the sum of input DJ and . DJ.

■ Optical Parameters(T_{OP} = Tc, VCC = 3.135 to 3.465 Volts)

Parameter	Symbol	Min.	Typical	Max.	Unit	Note
Transmitter Section:						
Center Wavelength	λ _c	1530	1550	1570	nm	1
Spectral Width	σ			1	nm	
Optical Output Power	Pout	1		5	dBm	2
Optical Rise/Fall Time	t _r / t _f			1300	ps	3
Extinction Ratio	ER	9			dB	
Deterministic Jitter Contribution	TXΔDJ			56.5	ps	4
Total Jitter Contribution	ТХДТЈ			119	ps	
Eye Mask for Optical Output	Eye Mask for Optical Output Compliant with Eye Mask Defined in IEEE 802.3					
Dalatina Internation Nation	DINI		standard	120	dB/Hz	
Relative Intensity Noise	RIN			-120	QB/HZ	
Receiver Section:		T		1		
Optical Input Wavelength		1470	1490	1510	nm	
Receiver Overload	Pol	-8			dBm	5.6
RX Sensitivity	Sen			-35	dBm	5.6
RX_LOS Assert	LOS A	-45			dBm	
RX_LOS Deassert	LOS _D			-36	dBm	
RX_LOS Hysteresis	LOS H	0.5	2	2.5	dB	
General Specifications						
Data Rate	BR		155		Mb/s	
Bit Error Rate	BER			10-12		

Max. Supported Link Length on 9/125μm SMF@155M	LMAX		150	km	7
Total System Budget	LB	29		dB	8

Note:

- 1. Also specified to meet curves in FC-PI 13.0 Figures 18 and 19, which allow trade-off between wavelength spectral width.
- 2. Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulations.
- 3. Unfiltered, 20-80%. Complies with IEEE 802.3 (Gig. E), FC 1x and 2x eye masks when filtered.
- 4. Measured with DJ-free data input signal. In actual application, output DJ will be the sum of input DJ and . DI
- 5. Measured with conformance signals defined in FC-PI 13.0 specifications.
- 6. Measured with PRBS 2³¹⁻¹ at 10⁻¹² BER
- 7. Dispersion limited per FC-PI Rev. 13
- 8. .Attenuation of 0.3 dB/km is used for the link length calculations. Distances are indicative only. Please refer to the Optical Specifications in Table IV to calculate a more accurate link budget based on specific conditions in your application.

■ Pin Assignment

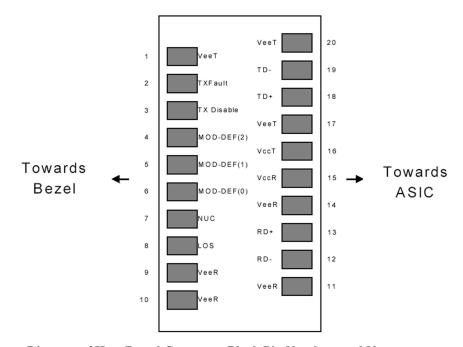


Diagram of Host Board Connector Block Pin Numbers and Names

■ Pin Description

Pin No	Name	Function	Plug Seq	Notes
1	VeeT	Transmitter Ground	1	1

2	TX Fault	Transmitter Fault Indication	3	
3	TX Disable	Transmitter Disable	3	2
4	MOD-DEF2	Module Definition	2	3
5	MOD-DEF1	Module Definition 1	3	3
6	MOD-DEF0	Module Definition 0	3	3
7	Rate Select	Not Connected	3	4
8	LOS	Loss of Signal	3	5
9	VeeR	Receiver Ground	1	1
10	VeeR	Receiver Ground	1	1
11	VeeR	Receiver Ground		1
12	RD-	Inv. Received Data Out	3	6
13	RD+	Received Data Out	3	6
14	VeeR	Receiver Ground	3	1
15	VccR	Receiver Power	2	1
16	VccT	Transmitter Power	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	6
19	TD-	Inv. Transmit In	3	6
20	VeeT	Transmitter Ground	1	

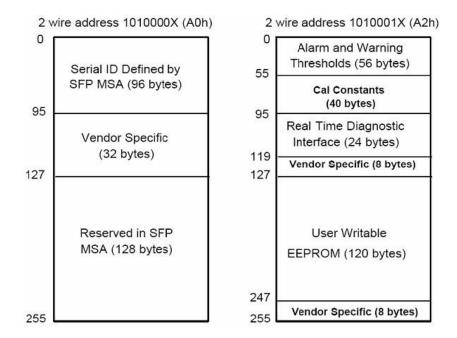
Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 3. Should be pulled up with 4.7k 10 kohms on host board to a voltage between 2.0V and 3.6V.MOD DEF(0) pulls line low to indicate module is plugged in.
- 4. Rate select is not used
- 5. LOS is open collector output. Should be pulled up with 4.7k 10 kohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.
- 6. AC Coupled

■ SFP Module EEPROM Information and Management

The SFP modules implement the 2-wire serial communication protocol as defined in the SFP-8472. The serial ID information of the SFP modules and Digital Diagnostic Monitor parameters can be accessed through the I²C interface at address A0h and A2h.

The memory is mapped in Table 1.


Detailed ID information (A0h) is listed in Table 2.

And the DDM specification is at address A2h.

For more details of the memory map and byte definitions, please refer to the SFF-8472, "Digital Diagnostic Monitoring Interface for Optical Transceivers". The DDM parameters have been internally calibrated.

Table 1. Digital Diagnostic Memory Map (Specific Data Field Descriptions)

■ EEPROM Serial ID Memory Contents (A0h)

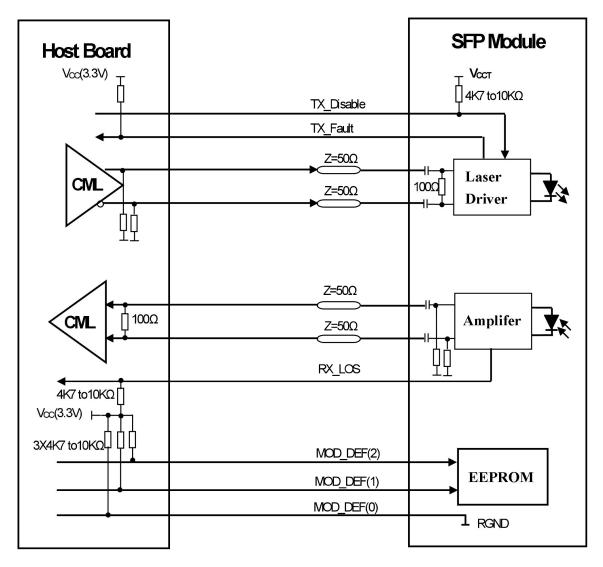
Data	Length	Name of	Description and Contents
Address	(Byte)	Length	
			Base ID Fields
0	1	Identifier	Type of Serial transceiver (03h=SFP)
1	1	Reserved	Extended identifier of type serial transceiver (04h)
2	1	Connector	Code of optical connector type (07=LC)
3-10	8	Transceiver	Fast Ethernet 100Base-BX
11	1	Encoding	4B5B (02h)
12	1	BR,Nominal	Nominal baud rate, unit of 100Mbps
13	1	Reserved	(0000h)
14	1	Length(9um,km)	Link length supported for 9/125um fiber, units of km
15	1	Length(9um)	Link length supported for 9/125um fiber, units of 100m
16	1	Length(50um)	Link length supported for 50/125um fiber, units of 10m
17	1	Length(62.5um)	Link length supported for 62.5/125um fiber, units of 10m
18	1	Length(Copper)	Link length supported for copper, units of meters
19	1	Reserved	
20-35	16	Vendor Name	SFP vendor name:
36	1	Reserved	
37-39	3	Vendor OUI	SFP transceiver vendor OUI ID
40-55	16	Vendor PN	Part Number: "xxxxxxx" (ASCII)
56-59	4	Vendor rev	Revision level for part number
60-61	2	Wavelength	Laser wavelength

62	1	Reserved			
63	1	CCID	Least significant byte of sum of data in address 0-62		
			Extended ID Fields		
64.65	2	Ontion	Indicates which optical SFP signals are implemented(001Ah =		
64-65	2	Option	LOS, TX_FAULT, TX_DISABLE all supported)		
66	1	BR, max	Upper bit rate margin, units of %		
67	1	BR, min	Lower bit rate margin, units of %		
68-83	16	Vendor SN	Serial number (ASCII)		
84-91	8	Date code	Manufacturing date code		
92	1	Diagnostic Type	Diagnostics		
93	1	Enhanced	Diagnostics		
93	1	Options	Diagnostics		
94	1	SFF-8472	Diagnostics		
95	1	CCEX	Check code for the extended ID Fields (addresses 64 to 94)		
	Vendor Specific ID Fields				
96-127	32	Readable	Vendor specific date, read only		
128-255	128	Reserved	Reserved for SFF-8079		

■ Digital Diagnostic Monitor Characteristics

Data Address	Parameter	Accuracy	Unit	Calibraton
96-97	Transceiver Internal Temperature	±3.0	°C	internal
98-99	VCC3 Internal Supply Voltage	±0.1	V	internal
100-101	Laser Bias Current	±10	%	internal
102-103	Tx Output Power	±3.0	dBm	internal
104-105	Rx Input Power	±3.0	dBm	internal

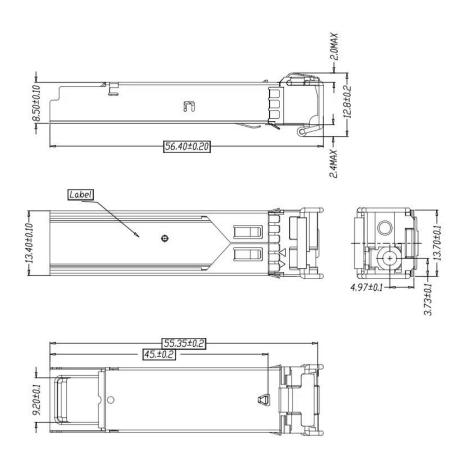
■ Regulatory Compliance

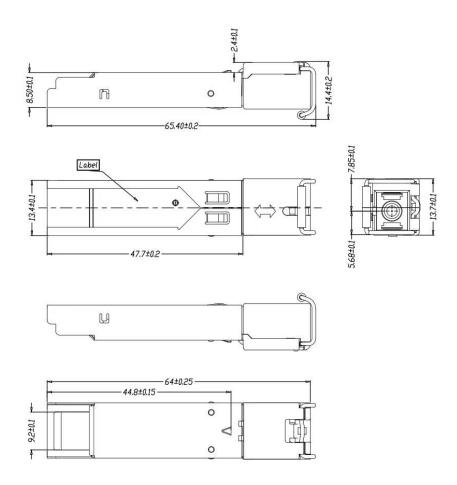

The transceiver complies with international Electromagnetic Compatibility (EMC) and international safety requirements and standards (see details in Table following).

Electrostatic Discharge	MIL-STD-883E	Class 1(>1000 V)
(ESD) to the Electrical Pins	Method 3015.7	Class 1(>1000 V)
Electrostatic Discharge (ESD)	IEC 61000-4-2	Compatible with standards
to the Duplex LC Receptacle	GR-1089-CORE	Compatible with standards
Electromagnetic	FCC Part 15 Class B	
Electromagnetic Interference (EMI)	EN55022 Class B (CISPR 22B)	Compatible with standards
interference (EMI)	VCCI Class B	

Lagar Eva Safaty	FDA 21CFR 1040.10 and 1040.11	Compatible with Class 1 laser
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	product.

■ Recommended Circuit:


SFP Host Recommended Circuit



Block Diagram

■ Mechanical Dimensions

Mechanical Drawing

Shenzhen GLight Communication Technology Co., Ltd. 5F, Building 3, Chao Hui Lou Industrial Park, No.119 Da Lang Hua Ting Road Longhua district, Shenzhen, Guangdong, China 518000

GLIGHT reserves the right to make changes to the products or information contained herein without notice.

No liability is assumed as a result of their use or application.

No rights under any patent accompany the sale of any such products or information. Published by Shenzhen GLight Communication Technology Co., Ltd. Copyright © GLight Communication TechnologyCo., Ltd. All Rights Reserved.